logo
pub struct TcpSocket { /* private fields */ }
Expand description

A TCP socket that has not yet been converted to a TcpStream or TcpListener.

TcpSocket wraps an operating system socket and enables the caller to configure the socket before establishing a TCP connection or accepting inbound connections. The caller is able to set socket option and explicitly bind the socket with a socket address.

The underlying socket is closed when the TcpSocket value is dropped.

TcpSocket should only be used directly if the default configuration used by TcpStream::connect and TcpListener::bind does not meet the required use case.

Calling TcpStream::connect("127.0.0.1:8080") is equivalent to:

use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    let stream = socket.connect(addr).await?;

    Ok(())
}

Calling TcpListener::bind("127.0.0.1:8080") is equivalent to:

use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    // On platforms with Berkeley-derived sockets, this allows to quickly
    // rebind a socket, without needing to wait for the OS to clean up the
    // previous one.
    //
    // On Windows, this allows rebinding sockets which are actively in use,
    // which allows “socket hijacking”, so we explicitly don't set it here.
    // https://docs.microsoft.com/en-us/windows/win32/winsock/using-so-reuseaddr-and-so-exclusiveaddruse
    socket.set_reuseaddr(true)?;
    socket.bind(addr)?;

    let listener = socket.listen(1024)?;

    Ok(())
}

Setting socket options not explicitly provided by TcpSocket may be done by accessing the RawFd/RawSocket using AsRawFd/AsRawSocket and setting the option with a crate like socket2.

Implementations

Creates a new socket configured for IPv4.

Calls socket(2) with AF_INET and SOCK_STREAM.

Returns

On success, the newly created TcpSocket is returned. If an error is encountered, it is returned instead.

Examples

Create a new IPv4 socket and start listening.

use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();
    let socket = TcpSocket::new_v4()?;
    socket.bind(addr)?;

    let listener = socket.listen(128)?;
    Ok(())
}

Creates a new socket configured for IPv6.

Calls socket(2) with AF_INET6 and SOCK_STREAM.

Returns

On success, the newly created TcpSocket is returned. If an error is encountered, it is returned instead.

Examples

Create a new IPv6 socket and start listening.

use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "[::1]:8080".parse().unwrap();
    let socket = TcpSocket::new_v6()?;
    socket.bind(addr)?;

    let listener = socket.listen(128)?;
    Ok(())
}

Allows the socket to bind to an in-use address.

Behavior is platform specific. Refer to the target platform’s documentation for more details.

Examples
use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    socket.set_reuseaddr(true)?;
    socket.bind(addr)?;

    let listener = socket.listen(1024)?;

    Ok(())
}

Retrieves the value set for SO_REUSEADDR on this socket.

Examples
use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    socket.set_reuseaddr(true)?;
    assert!(socket.reuseaddr().unwrap());
    socket.bind(addr)?;

    let listener = socket.listen(1024)?;
    Ok(())
}

Allows the socket to bind to an in-use port. Only available for unix systems (excluding Solaris & Illumos).

Behavior is platform specific. Refer to the target platform’s documentation for more details.

Examples
use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    socket.set_reuseport(true)?;
    socket.bind(addr)?;

    let listener = socket.listen(1024)?;
    Ok(())
}

Allows the socket to bind to an in-use port. Only available for unix systems (excluding Solaris & Illumos).

Behavior is platform specific. Refer to the target platform’s documentation for more details.

Examples
use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    socket.set_reuseport(true)?;
    assert!(socket.reuseport().unwrap());
    socket.bind(addr)?;

    let listener = socket.listen(1024)?;
    Ok(())
}

Sets the size of the TCP send buffer on this socket.

On most operating systems, this sets the SO_SNDBUF socket option.

Returns the size of the TCP send buffer for this socket.

On most operating systems, this is the value of the SO_SNDBUF socket option.

Note that if set_send_buffer_size has been called on this socket previously, the value returned by this function may not be the same as the argument provided to set_send_buffer_size. This is for the following reasons:

  • Most operating systems have minimum and maximum allowed sizes for the send buffer, and will clamp the provided value if it is below the minimum or above the maximum. The minimum and maximum buffer sizes are OS-dependent.
  • Linux will double the buffer size to account for internal bookkeeping data, and returns the doubled value from getsockopt(2). As per man 7 socket:

    Sets or gets the maximum socket send buffer in bytes. The kernel doubles this value (to allow space for bookkeeping overhead) when it is set using setsockopt(2), and this doubled value is returned by getsockopt(2).

Sets the size of the TCP receive buffer on this socket.

On most operating systems, this sets the SO_RCVBUF socket option.

Returns the size of the TCP receive buffer for this socket.

On most operating systems, this is the value of the SO_RCVBUF socket option.

Note that if set_recv_buffer_size has been called on this socket previously, the value returned by this function may not be the same as the argument provided to set_send_buffer_size. This is for the following reasons:

  • Most operating systems have minimum and maximum allowed sizes for the receive buffer, and will clamp the provided value if it is below the minimum or above the maximum. The minimum and maximum buffer sizes are OS-dependent.
  • Linux will double the buffer size to account for internal bookkeeping data, and returns the doubled value from getsockopt(2). As per man 7 socket:

    Sets or gets the maximum socket send buffer in bytes. The kernel doubles this value (to allow space for bookkeeping overhead) when it is set using setsockopt(2), and this doubled value is returned by getsockopt(2).

Gets the local address of this socket.

Will fail on windows if called before bind.

Examples
use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    socket.bind(addr)?;
    assert_eq!(socket.local_addr().unwrap().to_string(), "127.0.0.1:8080");
    let listener = socket.listen(1024)?;
    Ok(())
}

Binds the socket to the given address.

This calls the bind(2) operating-system function. Behavior is platform specific. Refer to the target platform’s documentation for more details.

Examples

Bind a socket before listening.

use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    socket.bind(addr)?;

    let listener = socket.listen(1024)?;

    Ok(())
}

Establishes a TCP connection with a peer at the specified socket address.

The TcpSocket is consumed. Once the connection is established, a connected TcpStream is returned. If the connection fails, the encountered error is returned.

This calls the connect(2) operating-system function. Behavior is platform specific. Refer to the target platform’s documentation for more details.

Examples

Connecting to a peer.

use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    let stream = socket.connect(addr).await?;

    Ok(())
}

Converts the socket into a TcpListener.

backlog defines the maximum number of pending connections are queued by the operating system at any given time. Connection are removed from the queue with TcpListener::accept. When the queue is full, the operating-system will start rejecting connections.

This calls the listen(2) operating-system function, marking the socket as a passive socket. Behavior is platform specific. Refer to the target platform’s documentation for more details.

Examples

Create a TcpListener.

use tokio::net::TcpSocket;

use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let addr = "127.0.0.1:8080".parse().unwrap();

    let socket = TcpSocket::new_v4()?;
    socket.bind(addr)?;

    let listener = socket.listen(1024)?;

    Ok(())
}

Converts a std::net::TcpStream into a TcpSocket. The provided socket must not have been connected prior to calling this function. This function is typically used together with crates such as socket2 to configure socket options that are not available on TcpSocket.

Examples
use tokio::net::TcpSocket;
use socket2::{Domain, Socket, Type};

#[tokio::main]
async fn main() -> std::io::Result<()> {
     
    let socket2_socket = Socket::new(Domain::IPV4, Type::STREAM, None)?;

    let socket = TcpSocket::from_std_stream(socket2_socket.into());

    Ok(())
}

Trait Implementations

Extracts the raw file descriptor. Read more

Formats the value using the given formatter. Read more

Converts a RawFd to a TcpSocket.

Notes

The caller is responsible for ensuring that the socket is in non-blocking mode.

Consumes this object, returning the raw underlying file descriptor. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.