1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
//! Storage for span data shared by multiple [`Layer`]s.
//!
//! ## Using the Span Registry
//!
//! This module provides the [`Registry`] type, a [`Subscriber`] implementation
//! which tracks per-span data and exposes it to [`Layer`]s. When a `Registry`
//! is used as the base `Subscriber` of a `Layer` stack, the
//! [`layer::Context`][ctx] type will provide methods allowing `Layer`s to
//! [look up span data][lookup] stored in the registry. While [`Registry`] is a
//! reasonable default for storing spans and events, other stores that implement
//! [`LookupSpan`] and [`Subscriber`] themselves (with [`SpanData`] implemented
//! by the per-span data they store) can be used as a drop-in replacement.
//!
//! For example, we might create a `Registry` and add multiple `Layer`s like so:
//! ```rust
//! use tracing_subscriber::{registry::Registry, Layer, prelude::*};
//! # use tracing_core::Subscriber;
//! # pub struct FooLayer {}
//! # pub struct BarLayer {}
//! # impl<S: Subscriber> Layer<S> for FooLayer {}
//! # impl<S: Subscriber> Layer<S> for BarLayer {}
//! # impl FooLayer {
//! # fn new() -> Self { Self {} }
//! # }
//! # impl BarLayer {
//! # fn new() -> Self { Self {} }
//! # }
//!
//! let subscriber = Registry::default()
//! .with(FooLayer::new())
//! .with(BarLayer::new());
//! ```
//!
//! If a type implementing `Layer` depends on the functionality of a `Registry`
//! implementation, it should bound its `Subscriber` type parameter with the
//! [`LookupSpan`] trait, like so:
//!
//! ```rust
//! use tracing_subscriber::{registry, Layer};
//! use tracing_core::Subscriber;
//!
//! pub struct MyLayer {
//! // ...
//! }
//!
//! impl<S> Layer<S> for MyLayer
//! where
//! S: Subscriber + for<'a> registry::LookupSpan<'a>,
//! {
//! // ...
//! }
//! ```
//! When this bound is added, the `Layer` implementation will be guaranteed
//! access to the [`Context`][ctx] methods, such as [`Context::span`][lookup], that
//! require the root subscriber to be a registry.
//!
//! [`Layer`]: ../layer/trait.Layer.html
//! [`Subscriber`]:
//! https://docs.rs/tracing-core/latest/tracing_core/subscriber/trait.Subscriber.html
//! [`Registry`]: struct.Registry.html
//! [ctx]: ../layer/struct.Context.html
//! [lookup]: ../layer/struct.Context.html#method.span
//! [`LookupSpan`]: trait.LookupSpan.html
//! [`SpanData`]: trait.SpanData.html
use std::fmt::Debug;
use tracing_core::{field::FieldSet, span::Id, Metadata};
/// A module containing a type map of span extensions.
mod extensions;
#[cfg(feature = "registry")]
mod sharded;
#[cfg(feature = "registry")]
mod stack;
pub use extensions::{Extensions, ExtensionsMut};
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
pub use sharded::Data;
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
pub use sharded::Registry;
/// Provides access to stored span data.
///
/// Subscribers which store span data and associate it with span IDs should
/// implement this trait; if they do, any [`Layer`]s wrapping them can look up
/// metadata via the [`Context`] type's [`span()`] method.
///
/// [`Layer`]: ../layer/trait.Layer.html
/// [`Context`]: ../layer/struct.Context.html
/// [`span()`]: ../layer/struct.Context.html#method.span
pub trait LookupSpan<'a> {
/// The type of span data stored in this registry.
type Data: SpanData<'a>;
/// Returns the [`SpanData`] for a given `Id`, if it exists.
///
/// <div class="example-wrap" style="display:inline-block">
/// <pre class="ignore" style="white-space:normal;font:inherit;">
/// <strong>Note</strong>: users of the <code>LookupSpan</code> trait should
/// typically call the <a href="#method.span"><code>span</code></a> method rather
/// than this method. The <code>span</code> method is implemented by
/// <em>calling</em> <code>span_data</code>, but returns a reference which is
/// capable of performing more sophisiticated queries.
/// </pre></div>
///
/// [`SpanData`]: trait.SpanData.html
fn span_data(&'a self, id: &Id) -> Option<Self::Data>;
/// Returns a [`SpanRef`] for the span with the given `Id`, if it exists.
///
/// A `SpanRef` is similar to [`SpanData`], but it allows performing
/// additional lookups against the registryr that stores the wrapped data.
///
/// In general, _users_ of the `LookupSpan` trait should use this method
/// rather than the [`span_data`] method; while _implementors_ of this trait
/// should only implement `span_data`.
///
/// [`SpanRef`]: struct.SpanRef.html
/// [`SpanData`]: trait.SpanData.html
/// [`span_data`]: #method.span_data
fn span(&'a self, id: &Id) -> Option<SpanRef<'_, Self>>
where
Self: Sized,
{
let data = self.span_data(&id)?;
Some(SpanRef {
registry: self,
data,
})
}
}
/// A stored representation of data associated with a span.
pub trait SpanData<'a> {
/// Returns this span's ID.
fn id(&self) -> Id;
/// Returns a reference to the span's `Metadata`.
fn metadata(&self) -> &'static Metadata<'static>;
/// Returns a reference to the ID
fn parent(&self) -> Option<&Id>;
/// Returns a reference to this span's `Extensions`.
///
/// The extensions may be used by `Layer`s to store additional data
/// describing the span.
fn extensions(&self) -> Extensions<'_>;
/// Returns a mutable reference to this span's `Extensions`.
///
/// The extensions may be used by `Layer`s to store additional data
/// describing the span.
fn extensions_mut(&self) -> ExtensionsMut<'_>;
}
/// A reference to [span data] and the associated [registry].
///
/// This type implements all the same methods as [`SpanData`][span data], and
/// provides additional methods for querying the registry based on values from
/// the span.
///
/// [span data]: trait.SpanData.html
/// [registry]: trait.LookupSpan.html
#[derive(Debug)]
pub struct SpanRef<'a, R: LookupSpan<'a>> {
registry: &'a R,
data: R::Data,
}
/// An iterator over the parents of a span, ordered from leaf to root.
///
/// This is returned by the [`SpanRef::scope`] method.
#[derive(Debug)]
pub struct Scope<'a, R> {
registry: &'a R,
next: Option<Id>,
}
impl<'a, R> Scope<'a, R>
where
R: LookupSpan<'a>,
{
/// Flips the order of the iterator, so that it is ordered from root to leaf.
///
/// The iterator will first return the root span, then that span's immediate child,
/// and so on until it finally returns the span that [`SpanRef::scope`] was called on.
///
/// If any items were consumed from the [`Scope`] before calling this method then they
/// will *not* be returned from the [`ScopeFromRoot`].
///
/// **Note**: this will allocate if there are many spans remaining, or if the
/// "smallvec" feature flag is not enabled.
#[allow(clippy::wrong_self_convention)]
pub fn from_root(self) -> ScopeFromRoot<'a, R> {
#[cfg(feature = "smallvec")]
type Buf<T> = smallvec::SmallVec<T>;
#[cfg(not(feature = "smallvec"))]
type Buf<T> = Vec<T>;
ScopeFromRoot {
spans: self.collect::<Buf<_>>().into_iter().rev(),
}
}
}
impl<'a, R> Iterator for Scope<'a, R>
where
R: LookupSpan<'a>,
{
type Item = SpanRef<'a, R>;
fn next(&mut self) -> Option<Self::Item> {
let curr = self.registry.span(self.next.as_ref()?)?;
self.next = curr.parent_id().cloned();
Some(curr)
}
}
/// An iterator over the parents of a span, ordered from root to leaf.
///
/// This is returned by the [`Scope::from_root`] method.
pub struct ScopeFromRoot<'a, R>
where
R: LookupSpan<'a>,
{
#[cfg(feature = "smallvec")]
spans: std::iter::Rev<smallvec::IntoIter<SpanRefVecArray<'a, R>>>,
#[cfg(not(feature = "smallvec"))]
spans: std::iter::Rev<std::vec::IntoIter<SpanRef<'a, R>>>,
}
impl<'a, R> Iterator for ScopeFromRoot<'a, R>
where
R: LookupSpan<'a>,
{
type Item = SpanRef<'a, R>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.spans.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.spans.size_hint()
}
}
impl<'a, R> Debug for ScopeFromRoot<'a, R>
where
R: LookupSpan<'a>,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.pad("ScopeFromRoot { .. }")
}
}
/// An iterator over the parents of a span.
///
/// This is returned by the [`SpanRef::parents`] method.
///
/// [`SpanRef::parents`]: struct.SpanRef.html#method.parents
#[deprecated(note = "replaced by `Scope`")]
#[derive(Debug)]
pub struct Parents<'a, R>(Scope<'a, R>);
#[allow(deprecated)]
impl<'a, R> Iterator for Parents<'a, R>
where
R: LookupSpan<'a>,
{
type Item = SpanRef<'a, R>;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
/// An iterator over a span's parents, starting with the root of the trace
/// tree.
///
/// For additonal details, see [`SpanRef::from_root`].
///
/// [`Span::from_root`]: struct.SpanRef.html#method.from_root
#[deprecated(note = "replaced by `ScopeFromRoot`", since = "0.2.19")]
#[derive(Debug)]
pub struct FromRoot<'a, R>(ScopeFromRoot<'a, R>)
where
R: LookupSpan<'a>;
#[allow(deprecated)]
impl<'a, R> Iterator for FromRoot<'a, R>
where
R: LookupSpan<'a>,
{
type Item = SpanRef<'a, R>;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
#[cfg(feature = "smallvec")]
type SpanRefVecArray<'span, L> = [SpanRef<'span, L>; 16];
impl<'a, R> SpanRef<'a, R>
where
R: LookupSpan<'a>,
{
/// Returns this span's ID.
pub fn id(&self) -> Id {
self.data.id()
}
/// Returns a static reference to the span's metadata.
pub fn metadata(&self) -> &'static Metadata<'static> {
self.data.metadata()
}
/// Returns the span's name,
pub fn name(&self) -> &'static str {
self.data.metadata().name()
}
/// Returns a list of [fields] defined by the span.
///
/// [fields]: https://docs.rs/tracing-core/latest/tracing_core/field/index.html
pub fn fields(&self) -> &FieldSet {
self.data.metadata().fields()
}
/// Returns the ID of this span's parent, or `None` if this span is the root
/// of its trace tree.
pub fn parent_id(&self) -> Option<&Id> {
self.data.parent()
}
/// Returns a `SpanRef` describing this span's parent, or `None` if this
/// span is the root of its trace tree.
pub fn parent(&self) -> Option<Self> {
let id = self.data.parent()?;
let data = self.registry.span_data(id)?;
Some(Self {
registry: self.registry,
data,
})
}
/// Returns an iterator over all parents of this span, starting with this span,
/// ordered from leaf to root.
///
/// The iterator will first return the span, then the span's immediate parent,
/// followed by that span's parent, and so on, until it reaches a root span.
///
/// ```rust
/// use tracing::{span, Subscriber};
/// use tracing_subscriber::{
/// layer::{Context, Layer},
/// prelude::*,
/// registry::LookupSpan,
/// };
///
/// struct PrintingLayer;
/// impl<S> Layer<S> for PrintingLayer
/// where
/// S: Subscriber + for<'lookup> LookupSpan<'lookup>,
/// {
/// fn on_enter(&self, id: &span::Id, ctx: Context<S>) {
/// let span = ctx.span(id).unwrap();
/// let scope = span.scope().map(|span| span.name()).collect::<Vec<_>>();
/// println!("Entering span: {:?}", scope);
/// }
/// }
///
/// tracing::subscriber::with_default(tracing_subscriber::registry().with(PrintingLayer), || {
/// let _root = tracing::info_span!("root").entered();
/// // Prints: Entering span: ["root"]
/// let _child = tracing::info_span!("child").entered();
/// // Prints: Entering span: ["child", "root"]
/// let _leaf = tracing::info_span!("leaf").entered();
/// // Prints: Entering span: ["leaf", "child", "root"]
/// });
/// ```
///
/// If the opposite order (from the root to this span) is desired, calling [`Scope::from_root`] on
/// the returned iterator reverses the order.
///
/// ```rust
/// # use tracing::{span, Subscriber};
/// # use tracing_subscriber::{
/// # layer::{Context, Layer},
/// # prelude::*,
/// # registry::LookupSpan,
/// # };
/// # struct PrintingLayer;
/// impl<S> Layer<S> for PrintingLayer
/// where
/// S: Subscriber + for<'lookup> LookupSpan<'lookup>,
/// {
/// fn on_enter(&self, id: &span::Id, ctx: Context<S>) {
/// let span = ctx.span(id).unwrap();
/// let scope = span.scope().from_root().map(|span| span.name()).collect::<Vec<_>>();
/// println!("Entering span: {:?}", scope);
/// }
/// }
///
/// tracing::subscriber::with_default(tracing_subscriber::registry().with(PrintingLayer), || {
/// let _root = tracing::info_span!("root").entered();
/// // Prints: Entering span: ["root"]
/// let _child = tracing::info_span!("child").entered();
/// // Prints: Entering span: ["root", "child"]
/// let _leaf = tracing::info_span!("leaf").entered();
/// // Prints: Entering span: ["root", "child", "leaf"]
/// });
/// ```
pub fn scope(&self) -> Scope<'a, R> {
Scope {
registry: self.registry,
next: Some(self.id()),
}
}
/// Returns an iterator over all parents of this span, starting with the
/// immediate parent.
///
/// The iterator will first return the span's immediate parent, followed by
/// that span's parent, followed by _that_ span's parent, and so on, until a
/// it reaches a root span.
#[deprecated(
note = "equivalent to `self.parent().into_iter().flat_map(SpanRef::scope)`, but consider whether excluding `self` is actually intended"
)]
#[allow(deprecated)]
pub fn parents(&self) -> Parents<'a, R> {
Parents(Scope {
registry: self.registry,
next: self.parent_id().cloned(),
})
}
/// Returns an iterator over all parents of this span, starting with the
/// root of the trace tree.
///
/// The iterator will return the root of the trace tree, followed by the
/// next span, and then the next, until this span's immediate parent is
/// returned.
///
/// **Note**: this will allocate if there are many spans remaining, or if the
/// "smallvec" feature flag is not enabled.
#[deprecated(
note = "equivalent to `self.parent().into_iter().flat_map(|span| span.scope().from_root())`, but consider whether excluding `self` is actually intended",
since = "0.2.19"
)]
#[allow(deprecated)]
pub fn from_root(&self) -> FromRoot<'a, R> {
FromRoot(self.parents().0.from_root())
}
/// Returns a reference to this span's `Extensions`.
///
/// The extensions may be used by `Layer`s to store additional data
/// describing the span.
pub fn extensions(&self) -> Extensions<'_> {
self.data.extensions()
}
/// Returns a mutable reference to this span's `Extensions`.
///
/// The extensions may be used by `Layer`s to store additional data
/// describing the span.
pub fn extensions_mut(&self) -> ExtensionsMut<'_> {
self.data.extensions_mut()
}
}
#[cfg(test)]
mod tests {
use crate::{
layer::{Context, Layer},
prelude::*,
registry::LookupSpan,
};
use std::sync::{Arc, Mutex};
use tracing::{span, Subscriber};
#[test]
fn spanref_scope_iteration_order() {
let last_entered_scope = Arc::new(Mutex::new(Vec::new()));
#[derive(Default)]
struct PrintingLayer {
last_entered_scope: Arc<Mutex<Vec<&'static str>>>,
}
impl<S> Layer<S> for PrintingLayer
where
S: Subscriber + for<'lookup> LookupSpan<'lookup>,
{
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
let span = ctx.span(id).unwrap();
let scope = span.scope().map(|span| span.name()).collect::<Vec<_>>();
*self.last_entered_scope.lock().unwrap() = scope;
}
}
let _guard = tracing::subscriber::set_default(crate::registry().with(PrintingLayer {
last_entered_scope: last_entered_scope.clone(),
}));
let _root = tracing::info_span!("root").entered();
assert_eq!(&*last_entered_scope.lock().unwrap(), &["root"]);
let _child = tracing::info_span!("child").entered();
assert_eq!(&*last_entered_scope.lock().unwrap(), &["child", "root"]);
let _leaf = tracing::info_span!("leaf").entered();
assert_eq!(
&*last_entered_scope.lock().unwrap(),
&["leaf", "child", "root"]
);
}
#[test]
fn spanref_scope_fromroot_iteration_order() {
let last_entered_scope = Arc::new(Mutex::new(Vec::new()));
#[derive(Default)]
struct PrintingLayer {
last_entered_scope: Arc<Mutex<Vec<&'static str>>>,
}
impl<S> Layer<S> for PrintingLayer
where
S: Subscriber + for<'lookup> LookupSpan<'lookup>,
{
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
let span = ctx.span(id).unwrap();
let scope = span
.scope()
.from_root()
.map(|span| span.name())
.collect::<Vec<_>>();
*self.last_entered_scope.lock().unwrap() = scope;
}
}
let _guard = tracing::subscriber::set_default(crate::registry().with(PrintingLayer {
last_entered_scope: last_entered_scope.clone(),
}));
let _root = tracing::info_span!("root").entered();
assert_eq!(&*last_entered_scope.lock().unwrap(), &["root"]);
let _child = tracing::info_span!("child").entered();
assert_eq!(&*last_entered_scope.lock().unwrap(), &["root", "child",]);
let _leaf = tracing::info_span!("leaf").entered();
assert_eq!(
&*last_entered_scope.lock().unwrap(),
&["root", "child", "leaf"]
);
}
}