1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! In-process memory IO types.

use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
use crate::loom::sync::Mutex;

use bytes::{Buf, BytesMut};
use std::{
    pin::Pin,
    sync::Arc,
    task::{self, Poll, Waker},
};

/// A bidirectional pipe to read and write bytes in memory.
///
/// A pair of `DuplexStream`s are created together, and they act as a "channel"
/// that can be used as in-memory IO types. Writing to one of the pairs will
/// allow that data to be read from the other, and vice versa.
///
/// # Closing a `DuplexStream`
///
/// If one end of the `DuplexStream` channel is dropped, any pending reads on
/// the other side will continue to read data until the buffer is drained, then
/// they will signal EOF by returning 0 bytes. Any writes to the other side,
/// including pending ones (that are waiting for free space in the buffer) will
/// return `Err(BrokenPipe)` immediately.
///
/// # Example
///
/// ```
/// # async fn ex() -> std::io::Result<()> {
/// # use tokio::io::{AsyncReadExt, AsyncWriteExt};
/// let (mut client, mut server) = tokio::io::duplex(64);
///
/// client.write_all(b"ping").await?;
///
/// let mut buf = [0u8; 4];
/// server.read_exact(&mut buf).await?;
/// assert_eq!(&buf, b"ping");
///
/// server.write_all(b"pong").await?;
///
/// client.read_exact(&mut buf).await?;
/// assert_eq!(&buf, b"pong");
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub struct DuplexStream {
    read: Arc<Mutex<Pipe>>,
    write: Arc<Mutex<Pipe>>,
}

/// A unidirectional IO over a piece of memory.
///
/// Data can be written to the pipe, and reading will return that data.
#[derive(Debug)]
struct Pipe {
    /// The buffer storing the bytes written, also read from.
    ///
    /// Using a `BytesMut` because it has efficient `Buf` and `BufMut`
    /// functionality already. Additionally, it can try to copy data in the
    /// same buffer if there read index has advanced far enough.
    buffer: BytesMut,
    /// Determines if the write side has been closed.
    is_closed: bool,
    /// The maximum amount of bytes that can be written before returning
    /// `Poll::Pending`.
    max_buf_size: usize,
    /// If the `read` side has been polled and is pending, this is the waker
    /// for that parked task.
    read_waker: Option<Waker>,
    /// If the `write` side has filled the `max_buf_size` and returned
    /// `Poll::Pending`, this is the waker for that parked task.
    write_waker: Option<Waker>,
}

// ===== impl DuplexStream =====

/// Create a new pair of `DuplexStream`s that act like a pair of connected sockets.
///
/// The `max_buf_size` argument is the maximum amount of bytes that can be
/// written to a side before the write returns `Poll::Pending`.
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub fn duplex(max_buf_size: usize) -> (DuplexStream, DuplexStream) {
    let one = Arc::new(Mutex::new(Pipe::new(max_buf_size)));
    let two = Arc::new(Mutex::new(Pipe::new(max_buf_size)));

    (
        DuplexStream {
            read: one.clone(),
            write: two.clone(),
        },
        DuplexStream {
            read: two,
            write: one,
        },
    )
}

impl AsyncRead for DuplexStream {
    // Previous rustc required this `self` to be `mut`, even though newer
    // versions recognize it isn't needed to call `lock()`. So for
    // compatibility, we include the `mut` and `allow` the lint.
    //
    // See https://github.com/rust-lang/rust/issues/73592
    #[allow(unused_mut)]
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<std::io::Result<()>> {
        Pin::new(&mut *self.read.lock()).poll_read(cx, buf)
    }
}

impl AsyncWrite for DuplexStream {
    #[allow(unused_mut)]
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
        buf: &[u8],
    ) -> Poll<std::io::Result<usize>> {
        Pin::new(&mut *self.write.lock()).poll_write(cx, buf)
    }

    #[allow(unused_mut)]
    fn poll_flush(
        mut self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
    ) -> Poll<std::io::Result<()>> {
        Pin::new(&mut *self.write.lock()).poll_flush(cx)
    }

    #[allow(unused_mut)]
    fn poll_shutdown(
        mut self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
    ) -> Poll<std::io::Result<()>> {
        Pin::new(&mut *self.write.lock()).poll_shutdown(cx)
    }
}

impl Drop for DuplexStream {
    fn drop(&mut self) {
        // notify the other side of the closure
        self.write.lock().close_write();
        self.read.lock().close_read();
    }
}

// ===== impl Pipe =====

impl Pipe {
    fn new(max_buf_size: usize) -> Self {
        Pipe {
            buffer: BytesMut::new(),
            is_closed: false,
            max_buf_size,
            read_waker: None,
            write_waker: None,
        }
    }

    fn close_write(&mut self) {
        self.is_closed = true;
        // needs to notify any readers that no more data will come
        if let Some(waker) = self.read_waker.take() {
            waker.wake();
        }
    }

    fn close_read(&mut self) {
        self.is_closed = true;
        // needs to notify any writers that they have to abort
        if let Some(waker) = self.write_waker.take() {
            waker.wake();
        }
    }
}

impl AsyncRead for Pipe {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<std::io::Result<()>> {
        if self.buffer.has_remaining() {
            let max = self.buffer.remaining().min(buf.remaining());
            buf.put_slice(&self.buffer[..max]);
            self.buffer.advance(max);
            if max > 0 {
                // The passed `buf` might have been empty, don't wake up if
                // no bytes have been moved.
                if let Some(waker) = self.write_waker.take() {
                    waker.wake();
                }
            }
            Poll::Ready(Ok(()))
        } else if self.is_closed {
            Poll::Ready(Ok(()))
        } else {
            self.read_waker = Some(cx.waker().clone());
            Poll::Pending
        }
    }
}

impl AsyncWrite for Pipe {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
        buf: &[u8],
    ) -> Poll<std::io::Result<usize>> {
        if self.is_closed {
            return Poll::Ready(Err(std::io::ErrorKind::BrokenPipe.into()));
        }
        let avail = self.max_buf_size - self.buffer.len();
        if avail == 0 {
            self.write_waker = Some(cx.waker().clone());
            return Poll::Pending;
        }

        let len = buf.len().min(avail);
        self.buffer.extend_from_slice(&buf[..len]);
        if let Some(waker) = self.read_waker.take() {
            waker.wake();
        }
        Poll::Ready(Ok(len))
    }

    fn poll_flush(self: Pin<&mut Self>, _: &mut task::Context<'_>) -> Poll<std::io::Result<()>> {
        Poll::Ready(Ok(()))
    }

    fn poll_shutdown(
        mut self: Pin<&mut Self>,
        _: &mut task::Context<'_>,
    ) -> Poll<std::io::Result<()>> {
        self.close_write();
        Poll::Ready(Ok(()))
    }
}