1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#[cfg(feature = "parsing")]
use crate::buffer::Cursor;
use crate::thread::ThreadBound;
use proc_macro2::{
Delimiter, Group, Ident, LexError, Literal, Punct, Spacing, Span, TokenStream, TokenTree,
};
#[cfg(feature = "printing")]
use quote::ToTokens;
use std::fmt::{self, Debug, Display};
use std::iter::FromIterator;
use std::slice;
use std::vec;
/// The result of a Syn parser.
pub type Result<T> = std::result::Result<T, Error>;
/// Error returned when a Syn parser cannot parse the input tokens.
///
/// # Error reporting in proc macros
///
/// The correct way to report errors back to the compiler from a procedural
/// macro is by emitting an appropriately spanned invocation of
/// [`compile_error!`] in the generated code. This produces a better diagnostic
/// message than simply panicking the macro.
///
/// [`compile_error!`]: std::compile_error!
///
/// When parsing macro input, the [`parse_macro_input!`] macro handles the
/// conversion to `compile_error!` automatically.
///
/// [`parse_macro_input!`]: crate::parse_macro_input!
///
/// ```
/// # extern crate proc_macro;
/// #
/// use proc_macro::TokenStream;
/// use syn::{parse_macro_input, AttributeArgs, ItemFn};
///
/// # const IGNORE: &str = stringify! {
/// #[proc_macro_attribute]
/// # };
/// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
/// let args = parse_macro_input!(args as AttributeArgs);
/// let input = parse_macro_input!(input as ItemFn);
///
/// /* ... */
/// # TokenStream::new()
/// }
/// ```
///
/// For errors that arise later than the initial parsing stage, the
/// [`.to_compile_error()`] or [`.into_compile_error()`] methods can be used to
/// perform an explicit conversion to `compile_error!`.
///
/// [`.to_compile_error()`]: Error::to_compile_error
/// [`.into_compile_error()`]: Error::into_compile_error
///
/// ```
/// # extern crate proc_macro;
/// #
/// # use proc_macro::TokenStream;
/// # use syn::{parse_macro_input, DeriveInput};
/// #
/// # const IGNORE: &str = stringify! {
/// #[proc_macro_derive(MyDerive)]
/// # };
/// pub fn my_derive(input: TokenStream) -> TokenStream {
/// let input = parse_macro_input!(input as DeriveInput);
///
/// // fn(DeriveInput) -> syn::Result<proc_macro2::TokenStream>
/// expand::my_derive(input)
/// .unwrap_or_else(syn::Error::into_compile_error)
/// .into()
/// }
/// #
/// # mod expand {
/// # use proc_macro2::TokenStream;
/// # use syn::{DeriveInput, Result};
/// #
/// # pub fn my_derive(input: DeriveInput) -> Result<TokenStream> {
/// # unimplemented!()
/// # }
/// # }
/// ```
pub struct Error {
messages: Vec<ErrorMessage>,
}
struct ErrorMessage {
// Span is implemented as an index into a thread-local interner to keep the
// size small. It is not safe to access from a different thread. We want
// errors to be Send and Sync to play nicely with the Failure crate, so pin
// the span we're given to its original thread and assume it is
// Span::call_site if accessed from any other thread.
start_span: ThreadBound<Span>,
end_span: ThreadBound<Span>,
message: String,
}
#[cfg(test)]
struct _Test
where
Error: Send + Sync;
impl Error {
/// Usually the [`ParseStream::error`] method will be used instead, which
/// automatically uses the correct span from the current position of the
/// parse stream.
///
/// Use `Error::new` when the error needs to be triggered on some span other
/// than where the parse stream is currently positioned.
///
/// [`ParseStream::error`]: crate::parse::ParseBuffer::error
///
/// # Example
///
/// ```
/// use syn::{Error, Ident, LitStr, Result, Token};
/// use syn::parse::ParseStream;
///
/// // Parses input that looks like `name = "string"` where the key must be
/// // the identifier `name` and the value may be any string literal.
/// // Returns the string literal.
/// fn parse_name(input: ParseStream) -> Result<LitStr> {
/// let name_token: Ident = input.parse()?;
/// if name_token != "name" {
/// // Trigger an error not on the current position of the stream,
/// // but on the position of the unexpected identifier.
/// return Err(Error::new(name_token.span(), "expected `name`"));
/// }
/// input.parse::<Token![=]>()?;
/// let s: LitStr = input.parse()?;
/// Ok(s)
/// }
/// ```
pub fn new<T: Display>(span: Span, message: T) -> Self {
Error {
messages: vec![ErrorMessage {
start_span: ThreadBound::new(span),
end_span: ThreadBound::new(span),
message: message.to_string(),
}],
}
}
/// Creates an error with the specified message spanning the given syntax
/// tree node.
///
/// Unlike the `Error::new` constructor, this constructor takes an argument
/// `tokens` which is a syntax tree node. This allows the resulting `Error`
/// to attempt to span all tokens inside of `tokens`. While you would
/// typically be able to use the `Spanned` trait with the above `Error::new`
/// constructor, implementation limitations today mean that
/// `Error::new_spanned` may provide a higher-quality error message on
/// stable Rust.
///
/// When in doubt it's recommended to stick to `Error::new` (or
/// `ParseStream::error`)!
#[cfg(feature = "printing")]
pub fn new_spanned<T: ToTokens, U: Display>(tokens: T, message: U) -> Self {
let mut iter = tokens.into_token_stream().into_iter();
let start = iter.next().map_or_else(Span::call_site, |t| t.span());
let end = iter.last().map_or(start, |t| t.span());
Error {
messages: vec![ErrorMessage {
start_span: ThreadBound::new(start),
end_span: ThreadBound::new(end),
message: message.to_string(),
}],
}
}
/// The source location of the error.
///
/// Spans are not thread-safe so this function returns `Span::call_site()`
/// if called from a different thread than the one on which the `Error` was
/// originally created.
pub fn span(&self) -> Span {
let start = match self.messages[0].start_span.get() {
Some(span) => *span,
None => return Span::call_site(),
};
let end = match self.messages[0].end_span.get() {
Some(span) => *span,
None => return Span::call_site(),
};
start.join(end).unwrap_or(start)
}
/// Render the error as an invocation of [`compile_error!`].
///
/// The [`parse_macro_input!`] macro provides a convenient way to invoke
/// this method correctly in a procedural macro.
///
/// [`compile_error!`]: std::compile_error!
/// [`parse_macro_input!`]: crate::parse_macro_input!
pub fn to_compile_error(&self) -> TokenStream {
self.messages
.iter()
.map(ErrorMessage::to_compile_error)
.collect()
}
/// Render the error as an invocation of [`compile_error!`].
///
/// [`compile_error!`]: std::compile_error!
///
/// # Example
///
/// ```
/// # extern crate proc_macro;
/// #
/// use proc_macro::TokenStream;
/// use syn::{parse_macro_input, DeriveInput, Error};
///
/// # const _: &str = stringify! {
/// #[proc_macro_derive(MyTrait)]
/// # };
/// pub fn derive_my_trait(input: TokenStream) -> TokenStream {
/// let input = parse_macro_input!(input as DeriveInput);
/// my_trait::expand(input)
/// .unwrap_or_else(Error::into_compile_error)
/// .into()
/// }
///
/// mod my_trait {
/// use proc_macro2::TokenStream;
/// use syn::{DeriveInput, Result};
///
/// pub(crate) fn expand(input: DeriveInput) -> Result<TokenStream> {
/// /* ... */
/// # unimplemented!()
/// }
/// }
/// ```
pub fn into_compile_error(self) -> TokenStream {
self.to_compile_error()
}
/// Add another error message to self such that when `to_compile_error()` is
/// called, both errors will be emitted together.
pub fn combine(&mut self, another: Error) {
self.messages.extend(another.messages);
}
}
impl ErrorMessage {
fn to_compile_error(&self) -> TokenStream {
let start = self
.start_span
.get()
.cloned()
.unwrap_or_else(Span::call_site);
let end = self.end_span.get().cloned().unwrap_or_else(Span::call_site);
// compile_error!($message)
TokenStream::from_iter(vec![
TokenTree::Ident(Ident::new("compile_error", start)),
TokenTree::Punct({
let mut punct = Punct::new('!', Spacing::Alone);
punct.set_span(start);
punct
}),
TokenTree::Group({
let mut group = Group::new(Delimiter::Brace, {
TokenStream::from_iter(vec![TokenTree::Literal({
let mut string = Literal::string(&self.message);
string.set_span(end);
string
})])
});
group.set_span(end);
group
}),
])
}
}
#[cfg(feature = "parsing")]
pub fn new_at<T: Display>(scope: Span, cursor: Cursor, message: T) -> Error {
if cursor.eof() {
Error::new(scope, format!("unexpected end of input, {}", message))
} else {
let span = crate::buffer::open_span_of_group(cursor);
Error::new(span, message)
}
}
#[cfg(all(feature = "parsing", any(feature = "full", feature = "derive")))]
pub fn new2<T: Display>(start: Span, end: Span, message: T) -> Error {
Error {
messages: vec![ErrorMessage {
start_span: ThreadBound::new(start),
end_span: ThreadBound::new(end),
message: message.to_string(),
}],
}
}
impl Debug for Error {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
if self.messages.len() == 1 {
formatter
.debug_tuple("Error")
.field(&self.messages[0])
.finish()
} else {
formatter
.debug_tuple("Error")
.field(&self.messages)
.finish()
}
}
}
impl Debug for ErrorMessage {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
Debug::fmt(&self.message, formatter)
}
}
impl Display for Error {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str(&self.messages[0].message)
}
}
impl Clone for Error {
fn clone(&self) -> Self {
Error {
messages: self.messages.clone(),
}
}
}
impl Clone for ErrorMessage {
fn clone(&self) -> Self {
let start = self
.start_span
.get()
.cloned()
.unwrap_or_else(Span::call_site);
let end = self.end_span.get().cloned().unwrap_or_else(Span::call_site);
ErrorMessage {
start_span: ThreadBound::new(start),
end_span: ThreadBound::new(end),
message: self.message.clone(),
}
}
}
impl std::error::Error for Error {}
impl From<LexError> for Error {
fn from(err: LexError) -> Self {
Error::new(err.span(), "lex error")
}
}
impl IntoIterator for Error {
type Item = Error;
type IntoIter = IntoIter;
fn into_iter(self) -> Self::IntoIter {
IntoIter {
messages: self.messages.into_iter(),
}
}
}
pub struct IntoIter {
messages: vec::IntoIter<ErrorMessage>,
}
impl Iterator for IntoIter {
type Item = Error;
fn next(&mut self) -> Option<Self::Item> {
Some(Error {
messages: vec![self.messages.next()?],
})
}
}
impl<'a> IntoIterator for &'a Error {
type Item = Error;
type IntoIter = Iter<'a>;
fn into_iter(self) -> Self::IntoIter {
Iter {
messages: self.messages.iter(),
}
}
}
pub struct Iter<'a> {
messages: slice::Iter<'a, ErrorMessage>,
}
impl<'a> Iterator for Iter<'a> {
type Item = Error;
fn next(&mut self) -> Option<Self::Item> {
Some(Error {
messages: vec![self.messages.next()?.clone()],
})
}
}
impl Extend<Error> for Error {
fn extend<T: IntoIterator<Item = Error>>(&mut self, iter: T) {
for err in iter {
self.combine(err);
}
}
}