1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
// pest. The Elegant Parser
// Copyright (c) 2018 Dragoș Tiselice
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.
//! Constructs useful in infix operator parsing with the precedence climbing method.
use std::collections::HashMap;
use std::iter::Peekable;
use std::ops::BitOr;
use iterators::Pair;
use RuleType;
/// Associativity of an [`Operator`].
///
/// [`Operator`]: struct.Operator.html
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Assoc {
/// Left `Operator` associativity
Left,
/// Right `Operator` associativity
Right,
}
/// Infix operator used in [`PrecClimber`].
///
/// [`PrecClimber`]: struct.PrecClimber.html
#[derive(Debug)]
pub struct Operator<R: RuleType> {
rule: R,
assoc: Assoc,
next: Option<Box<Operator<R>>>,
}
impl<R: RuleType> Operator<R> {
/// Creates a new `Operator` from a `Rule` and `Assoc`.
///
/// # Examples
///
/// ```
/// # use pest::prec_climber::{Assoc, Operator};
/// # #[allow(non_camel_case_types)]
/// # #[allow(dead_code)]
/// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// # enum Rule {
/// # plus,
/// # minus
/// # }
/// Operator::new(Rule::plus, Assoc::Left) | Operator::new(Rule::minus, Assoc::Right);
/// ```
pub fn new(rule: R, assoc: Assoc) -> Operator<R> {
Operator {
rule,
assoc,
next: None,
}
}
}
impl<R: RuleType> BitOr for Operator<R> {
type Output = Self;
fn bitor(mut self, rhs: Self) -> Self {
fn assign_next<R: RuleType>(op: &mut Operator<R>, next: Operator<R>) {
if let Some(ref mut child) = op.next {
assign_next(child, next);
} else {
op.next = Some(Box::new(next));
}
}
assign_next(&mut self, rhs);
self
}
}
/// List of operators and precedences, which can perform [precedence climbing][1] on infix
/// expressions contained in a [`Pairs`]. The token pairs contained in the `Pairs` should start
/// with a *primary* pair and then alternate between an *operator* and a *primary*.
///
/// [1]: https://en.wikipedia.org/wiki/Operator-precedence_parser#Precedence_climbing_method
/// [`Pairs`]: ../iterators/struct.Pairs.html
#[derive(Debug)]
pub struct PrecClimber<R: RuleType> {
ops: HashMap<R, (u32, Assoc)>,
}
impl<R: RuleType> PrecClimber<R> {
/// Creates a new `PrecClimber` from the `Operator`s contained in `ops`. Every entry in the
/// `Vec` has precedence *index + 1*. In order to have operators with same precedence, they need
/// to be chained with `|` between them.
///
/// # Examples
///
/// ```
/// # use pest::prec_climber::{Assoc, Operator, PrecClimber};
/// # #[allow(non_camel_case_types)]
/// # #[allow(dead_code)]
/// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// # enum Rule {
/// # plus,
/// # minus,
/// # times,
/// # divide,
/// # power
/// # }
/// PrecClimber::new(vec![
/// Operator::new(Rule::plus, Assoc::Left) | Operator::new(Rule::minus, Assoc::Left),
/// Operator::new(Rule::times, Assoc::Left) | Operator::new(Rule::divide, Assoc::Left),
/// Operator::new(Rule::power, Assoc::Right)
/// ]);
/// ```
pub fn new(ops: Vec<Operator<R>>) -> PrecClimber<R> {
let ops = ops
.into_iter()
.zip(1..)
.fold(HashMap::new(), |mut map, (op, prec)| {
let mut next = Some(op);
while let Some(op) = next.take() {
match op {
Operator {
rule,
assoc,
next: op_next,
} => {
map.insert(rule, (prec, assoc));
next = op_next.map(|op| *op);
}
}
}
map
});
PrecClimber { ops }
}
/// Performs the precedence climbing algorithm on the `pairs` in a similar manner to map-reduce.
/// *Primary* pairs are mapped with `primary` and then reduced to one single result with
/// `infix`.
///
/// # Panics
///
/// Panics will occur when `pairs` is empty or when the alternating *primary*, *operator*,
/// *primary* order is not respected.
///
/// # Examples
///
/// ```ignore
/// let primary = |pair| {
/// consume(pair, climber)
/// };
/// let infix = |lhs: i32, op: Pair<Rule>, rhs: i32| {
/// match op.rule() {
/// Rule::plus => lhs + rhs,
/// Rule::minus => lhs - rhs,
/// Rule::times => lhs * rhs,
/// Rule::divide => lhs / rhs,
/// Rule::power => lhs.pow(rhs as u32),
/// _ => unreachable!()
/// }
/// };
///
/// let result = climber.climb(pairs, primary, infix);
/// ```
pub fn climb<'i, P, F, G, T>(&self, mut pairs: P, mut primary: F, mut infix: G) -> T
where
P: Iterator<Item = Pair<'i, R>>,
F: FnMut(Pair<'i, R>) -> T,
G: FnMut(T, Pair<'i, R>, T) -> T,
{
let lhs = primary(
pairs
.next()
.expect("precedence climbing requires a non-empty Pairs"),
);
self.climb_rec(lhs, 0, &mut pairs.peekable(), &mut primary, &mut infix)
}
fn climb_rec<'i, P, F, G, T>(
&self,
mut lhs: T,
min_prec: u32,
pairs: &mut Peekable<P>,
primary: &mut F,
infix: &mut G,
) -> T
where
P: Iterator<Item = Pair<'i, R>>,
F: FnMut(Pair<'i, R>) -> T,
G: FnMut(T, Pair<'i, R>, T) -> T,
{
while pairs.peek().is_some() {
let rule = pairs.peek().unwrap().as_rule();
if let Some(&(prec, _)) = self.ops.get(&rule) {
if prec >= min_prec {
let op = pairs.next().unwrap();
let mut rhs = primary(pairs.next().expect(
"infix operator must be followed by \
a primary expression",
));
while pairs.peek().is_some() {
let rule = pairs.peek().unwrap().as_rule();
if let Some(&(new_prec, assoc)) = self.ops.get(&rule) {
if new_prec > prec || assoc == Assoc::Right && new_prec == prec {
rhs = self.climb_rec(rhs, new_prec, pairs, primary, infix);
} else {
break;
}
} else {
break;
}
}
lhs = infix(lhs, op, rhs);
} else {
break;
}
} else {
break;
}
}
lhs
}
}