1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
use crate::*;
use alloc::borrow::Cow;
use alloc::vec::Vec;
use core::convert::TryFrom;
mod btreeset;
mod hashset;
mod iterator;
mod set_of;
pub use btreeset::*;
#[cfg(feature = "std")]
pub use hashset::*;
pub use iterator::*;
pub use set_of::*;
/// The `SET` object is an unordered list of heteregeneous types.
///
/// Sets can usually be of 2 types:
/// - a list of different objects (`SET`, usually parsed as a `struct`)
/// - a list of similar objects (`SET OF`, usually parsed as a `BTreeSet<T>` or `HashSet<T>`)
///
/// The current object covers the former. For the latter, see the [`SetOf`] documentation.
///
/// The `Set` object contains the (*unparsed*) encoded representation of its content. It provides
/// methods to parse and iterate contained objects, or convert the sequence to other types.
///
/// # Building a Set
///
/// To build a DER set:
/// - if the set is composed of objects of the same type, the [`Set::from_iter_to_der`] method can be used
/// - otherwise, the [`ToDer`] trait can be used to create content incrementally
///
/// ```
/// use asn1_rs::{Integer, Set, SerializeResult, ToDer};
///
/// fn build_set<'a>() -> SerializeResult<Set<'a>> {
/// let mut v = Vec::new();
/// // add an Integer object (construct type):
/// let i = Integer::from_u32(4);
/// let _ = i.write_der(&mut v)?;
/// // some primitive objects also implement `ToDer`. A string will be mapped as `Utf8String`:
/// let _ = "abcd".write_der(&mut v)?;
/// // return the set built from the DER content
/// Ok(Set::new(v.into()))
/// }
///
/// let seq = build_set().unwrap();
///
/// ```
///
/// # Examples
///
/// ```
/// use asn1_rs::{Error, Set};
///
/// // build set
/// let it = [2, 3, 4].iter();
/// let set = Set::from_iter_to_der(it).unwrap();
///
/// // `set` now contains the serialized DER representation of the array
///
/// // iterate objects
/// let mut sum = 0;
/// for item in set.der_iter::<u32, Error>() {
/// // item has type `Result<u32>`, since parsing the serialized bytes could fail
/// sum += item.expect("parsing list item failed");
/// }
/// assert_eq!(sum, 9);
///
/// ```
///
/// Note: the above example encodes a `SET OF INTEGER` object, the [`SetOf`] object could
/// be used to provide a simpler API.
///
#[derive(Clone, Debug)]
pub struct Set<'a> {
/// Serialized DER representation of the set content
pub content: Cow<'a, [u8]>,
}
impl<'a> Set<'a> {
/// Build a set, given the provided content
pub const fn new(content: Cow<'a, [u8]>) -> Self {
Set { content }
}
/// Consume the set and return the content
#[inline]
pub fn into_content(self) -> Cow<'a, [u8]> {
self.content
}
/// Apply the parsing function to the set content, consuming the set
///
/// Note: this function expects the caller to take ownership of content.
/// In some cases, handling the lifetime of objects is not easy (when keeping only references on
/// data). Other methods are provided (depending on the use case):
/// - [`Set::parse`] takes a reference on the set data, but does not consume it,
/// - [`Set::from_der_and_then`] does the parsing of the set and applying the function
/// in one step, ensuring there are only references (and dropping the temporary set).
pub fn and_then<U, F, E>(self, op: F) -> ParseResult<'a, U, E>
where
F: FnOnce(Cow<'a, [u8]>) -> ParseResult<U, E>,
{
op(self.content)
}
/// Same as [`Set::from_der_and_then`], but using BER encoding (no constraints).
pub fn from_ber_and_then<U, F, E>(bytes: &'a [u8], op: F) -> ParseResult<'a, U, E>
where
F: FnOnce(&'a [u8]) -> ParseResult<U, E>,
E: From<Error>,
{
let (rem, seq) = Set::from_ber(bytes).map_err(Err::convert)?;
let data = match seq.content {
Cow::Borrowed(b) => b,
// Since 'any' is built from 'bytes', it is borrowed by construction
Cow::Owned(_) => unreachable!(),
};
let (_, res) = op(data)?;
Ok((rem, res))
}
/// Parse a DER set and apply the provided parsing function to content
///
/// After parsing, the set object and header are discarded.
///
/// ```
/// use asn1_rs::{FromDer, ParseResult, Set};
///
/// // Parse a SET {
/// // a INTEGER (0..255),
/// // b INTEGER (0..4294967296)
/// // }
/// // and return only `(a,b)
/// fn parser(i: &[u8]) -> ParseResult<(u8, u32)> {
/// Set::from_der_and_then(i, |i| {
/// let (i, a) = u8::from_der(i)?;
/// let (i, b) = u32::from_der(i)?;
/// Ok((i, (a, b)))
/// }
/// )
/// }
/// ```
pub fn from_der_and_then<U, F, E>(bytes: &'a [u8], op: F) -> ParseResult<'a, U, E>
where
F: FnOnce(&'a [u8]) -> ParseResult<U, E>,
E: From<Error>,
{
let (rem, seq) = Set::from_der(bytes).map_err(Err::convert)?;
let data = match seq.content {
Cow::Borrowed(b) => b,
// Since 'any' is built from 'bytes', it is borrowed by construction
Cow::Owned(_) => unreachable!(),
};
let (_, res) = op(data)?;
Ok((rem, res))
}
/// Apply the parsing function to the set content (non-consuming version)
pub fn parse<F, T, E>(&'a self, mut f: F) -> ParseResult<'a, T, E>
where
F: FnMut(&'a [u8]) -> ParseResult<'a, T, E>,
{
let input: &[u8] = &self.content;
f(input)
}
/// Apply the parsing function to the set content (consuming version)
///
/// Note: to parse and apply a parsing function in one step, use the
/// [`Set::from_der_and_then`] method.
///
/// # Limitations
///
/// This function fails if the set contains `Owned` data, because the parsing function
/// takes a reference on data (which is dropped).
pub fn parse_into<F, T, E>(self, mut f: F) -> ParseResult<'a, T, E>
where
F: FnMut(&'a [u8]) -> ParseResult<'a, T, E>,
E: From<Error>,
{
match self.content {
Cow::Borrowed(b) => f(b),
_ => Err(nom::Err::Error(Error::LifetimeError.into())),
}
}
/// Return an iterator over the set content, attempting to decode objects as BER
///
/// This method can be used when all objects from the set have the same type.
pub fn ber_iter<T, E>(&'a self) -> SetIterator<'a, T, BerParser, E>
where
T: FromBer<'a, E>,
{
SetIterator::new(&self.content)
}
/// Return an iterator over the set content, attempting to decode objects as DER
///
/// This method can be used when all objects from the set have the same type.
pub fn der_iter<T, E>(&'a self) -> SetIterator<'a, T, DerParser, E>
where
T: FromDer<'a, E>,
{
SetIterator::new(&self.content)
}
/// Attempt to parse the set as a `SET OF` items (BER), and return the parsed items as a `Vec`.
pub fn ber_set_of<T, E>(&'a self) -> Result<Vec<T>, E>
where
T: FromBer<'a, E>,
E: From<Error>,
{
self.ber_iter().collect()
}
/// Attempt to parse the set as a `SET OF` items (DER), and return the parsed items as a `Vec`.
pub fn der_set_of<T, E>(&'a self) -> Result<Vec<T>, E>
where
T: FromDer<'a, E>,
E: From<Error>,
{
self.der_iter().collect()
}
/// Attempt to parse the set as a `SET OF` items (BER) (consuming input),
/// and return the parsed items as a `Vec`.
///
/// Note: if `Self` is an `Owned` object, the data will be duplicated (causing allocations) into separate objects.
pub fn into_ber_set_of<T, E>(self) -> Result<Vec<T>, E>
where
for<'b> T: FromBer<'b, E>,
E: From<Error>,
T: ToStatic<Owned = T>,
{
match self.content {
Cow::Borrowed(bytes) => SetIterator::<T, BerParser, E>::new(bytes).collect(),
Cow::Owned(data) => {
let v1 =
SetIterator::<T, BerParser, E>::new(&data).collect::<Result<Vec<T>, E>>()?;
let v2 = v1.iter().map(|t| t.to_static()).collect::<Vec<_>>();
Ok(v2)
}
}
}
/// Attempt to parse the set as a `SET OF` items (DER) (consuming input),
/// and return the parsed items as a `Vec`.
///
/// Note: if `Self` is an `Owned` object, the data will be duplicated (causing allocations) into separate objects.
pub fn into_der_set_of<T, E>(self) -> Result<Vec<T>, E>
where
for<'b> T: FromDer<'b, E>,
E: From<Error>,
T: ToStatic<Owned = T>,
{
match self.content {
Cow::Borrowed(bytes) => SetIterator::<T, DerParser, E>::new(bytes).collect(),
Cow::Owned(data) => {
let v1 =
SetIterator::<T, DerParser, E>::new(&data).collect::<Result<Vec<T>, E>>()?;
let v2 = v1.iter().map(|t| t.to_static()).collect::<Vec<_>>();
Ok(v2)
}
}
}
pub fn into_der_set_of_ref<T, E>(self) -> Result<Vec<T>, E>
where
T: FromDer<'a, E>,
E: From<Error>,
{
match self.content {
Cow::Borrowed(bytes) => SetIterator::<T, DerParser, E>::new(bytes).collect(),
Cow::Owned(_) => Err(Error::LifetimeError.into()),
}
}
}
impl<'a> ToStatic for Set<'a> {
type Owned = Set<'static>;
fn to_static(&self) -> Self::Owned {
Set {
content: Cow::Owned(self.content.to_vec()),
}
}
}
impl<'a> AsRef<[u8]> for Set<'a> {
fn as_ref(&self) -> &[u8] {
&self.content
}
}
impl<'a> TryFrom<Any<'a>> for Set<'a> {
type Error = Error;
fn try_from(any: Any<'a>) -> Result<Set<'a>> {
TryFrom::try_from(&any)
}
}
impl<'a, 'b> TryFrom<&'b Any<'a>> for Set<'a> {
type Error = Error;
fn try_from(any: &'b Any<'a>) -> Result<Set<'a>> {
any.tag().assert_eq(Self::TAG)?;
any.header.assert_constructed()?;
Ok(Set {
content: Cow::Borrowed(any.data),
})
}
}
impl<'a> CheckDerConstraints for Set<'a> {
fn check_constraints(_any: &Any) -> Result<()> {
Ok(())
}
}
impl<'a> DerAutoDerive for Set<'a> {}
impl<'a> Tagged for Set<'a> {
const TAG: Tag = Tag::Set;
}
#[cfg(feature = "std")]
impl ToDer for Set<'_> {
fn to_der_len(&self) -> Result<usize> {
let sz = self.content.len();
if sz < 127 {
// 1 (class+tag) + 1 (length) + len
Ok(2 + sz)
} else {
// 1 (class+tag) + n (length) + len
let n = Length::Definite(sz).to_der_len()?;
Ok(1 + n + sz)
}
}
fn write_der_header(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
let header = Header::new(
Class::Universal,
true,
Self::TAG,
Length::Definite(self.content.len()),
);
header.write_der_header(writer).map_err(Into::into)
}
fn write_der_content(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
writer.write(&self.content).map_err(Into::into)
}
}
#[cfg(feature = "std")]
impl<'a> Set<'a> {
/// Attempt to create a `Set` from an iterator over serializable objects (to DER)
///
/// # Examples
///
/// ```
/// use asn1_rs::Set;
///
/// // build set
/// let it = [2, 3, 4].iter();
/// let seq = Set::from_iter_to_der(it).unwrap();
/// ```
pub fn from_iter_to_der<T, IT>(it: IT) -> SerializeResult<Self>
where
IT: Iterator<Item = T>,
T: ToDer,
T: Tagged,
{
let mut v = Vec::new();
for item in it {
let item_v = <T as ToDer>::to_der_vec(&item)?;
v.extend_from_slice(&item_v);
}
Ok(Set {
content: Cow::Owned(v),
})
}
}