1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
use crate::convert::Convert;
#[cfg(feature = "specialize")]
use crate::BuildHasherExt;

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)))]
pub use crate::aes_hash::*;

#[cfg(not(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri))))]
pub use crate::fallback_hash::*;

#[cfg(all(feature = "compile-time-rng", any(not(feature = "runtime-rng"), test)))]
use const_random::const_random;
use core::fmt;
use core::hash::BuildHasher;
#[cfg(feature = "specialize")]
use core::hash::Hash;
use core::hash::Hasher;

#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std as alloc;


#[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
use alloc::boxed::Box;
use core::sync::atomic::{AtomicUsize, Ordering};
#[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
use once_cell::race::OnceBox;

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)))]
use crate::aes_hash::*;
#[cfg(not(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri))))]
use crate::fallback_hash::*;

#[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
static SEEDS: OnceBox<[[u64; 4]; 2]> = OnceBox::new();

static COUNTER: AtomicUsize = AtomicUsize::new(0);

pub(crate) const PI: [u64; 4] = [
    0x243f_6a88_85a3_08d3,
    0x1319_8a2e_0370_7344,
    0xa409_3822_299f_31d0,
    0x082e_fa98_ec4e_6c89,
];

pub(crate) const PI2: [u64; 4] = [
    0x4528_21e6_38d0_1377,
    0xbe54_66cf_34e9_0c6c,
    0xc0ac_29b7_c97c_50dd,
    0x3f84_d5b5_b547_0917,
];

#[inline]
pub(crate) fn seeds() -> [u64; 4] {
    #[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
    {
        SEEDS.get_or_init(|| {
            let mut result: [u8; 64] = [0; 64];
            getrandom::getrandom(&mut result).expect("getrandom::getrandom() failed.");
            Box::new(result.convert())
        })[1]
    }
    #[cfg(all(feature = "compile-time-rng", any(not(feature = "runtime-rng"), test)))]
    {
        [
            const_random!(u64),
            const_random!(u64),
            const_random!(u64),
            const_random!(u64),
        ]
    }
    #[cfg(all(not(feature = "runtime-rng"), not(feature = "compile-time-rng")))]
    {
        PI
    }
}

/// Provides a [Hasher] factory. This is typically used (e.g. by [HashMap]) to create
/// [AHasher]s in order to hash the keys of the map. See `build_hasher` below.
///
/// [build_hasher]: ahash::
/// [Hasher]: std::hash::Hasher
/// [BuildHasher]: std::hash::BuildHasher
/// [HashMap]: std::collections::HashMap
#[derive(Clone)]
pub struct RandomState {
    pub(crate) k0: u64,
    pub(crate) k1: u64,
    pub(crate) k2: u64,
    pub(crate) k3: u64,
}

impl fmt::Debug for RandomState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("RandomState { .. }")
    }
}

impl RandomState {
    /// Use randomly generated keys
    #[inline]
    pub fn new() -> RandomState {
        #[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
        {
            let seeds = SEEDS.get_or_init(|| {
                let mut result: [u8; 64] = [0; 64];
                getrandom::getrandom(&mut result).expect("getrandom::getrandom() failed.");
                Box::new(result.convert())
            });
            RandomState::from_keys(seeds[0], seeds[1])
        }
        #[cfg(all(feature = "compile-time-rng", any(not(feature = "runtime-rng"), test)))]
        {
            RandomState::from_keys(
                [
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                ],
                [
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                ],
            )
        }
        #[cfg(all(not(feature = "runtime-rng"), not(feature = "compile-time-rng")))]
        {
            RandomState::from_keys(PI, PI2)
        }
    }

    /// Allows for supplying seeds, but each time it is called the resulting state will be different.
    /// This is done using a static counter, so it can safely be used with a fixed keys.
    #[inline]
    pub fn generate_with(k0: u64, k1: u64, k2: u64, k3: u64) -> RandomState {
        RandomState::from_keys(seeds(), [k0, k1, k2, k3])
    }

    fn from_keys(a: [u64; 4], b: [u64; 4]) -> RandomState {
        let [k0, k1, k2, k3] = a;
        let mut hasher = AHasher::from_random_state(&RandomState { k0, k1, k2, k3 });

        let stack_mem_loc = &hasher as *const _ as usize;
        #[cfg(not(all(target_arch = "arm", target_os = "none")))]
        {
            hasher.write_usize(COUNTER.fetch_add(stack_mem_loc, Ordering::Relaxed));
        }
        #[cfg(all(target_arch = "arm", target_os = "none"))]
        {
            let previous = COUNTER.load(Ordering::Relaxed);
            let new = previous.wrapping_add(stack_mem_loc);
            COUNTER.store(new, Ordering::Relaxed);
            hasher.write_usize(new);
        }
        #[cfg(all(not(feature = "runtime-rng"), not(feature = "compile-time-rng")))]
        hasher.write_usize(&PI as *const _ as usize);
        let mix = |k: u64| {
            let mut h = hasher.clone();
            h.write_u64(k);
            h.finish()
        };

        RandomState {
            k0: mix(b[0]),
            k1: mix(b[1]),
            k2: mix(b[2]),
            k3: mix(b[3]),
        }
    }

    /// Internal. Used by Default.
    #[inline]
    pub(crate) fn with_fixed_keys() -> RandomState {
        let [k0, k1, k2, k3] = seeds();
        RandomState { k0, k1, k2, k3 }
    }

    /// Allows for explicitly setting the seeds to used.
    #[inline]
    pub const fn with_seeds(k0: u64, k1: u64, k2: u64, k3: u64) -> RandomState {
        RandomState { k0: k0 ^ PI2[0], k1: k1 ^ PI2[1], k2: k2 ^ PI2[2], k3: k3 ^ PI2[3] }
    }
}

impl Default for RandomState {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl BuildHasher for RandomState {
    type Hasher = AHasher;

    /// Constructs a new [AHasher] with keys based on this [RandomState] object.
    /// This means that two different [RandomState]s will will generate
    /// [AHasher]s that will return different hashcodes, but [Hasher]s created from the same [BuildHasher]
    /// will generate the same hashes for the same input data.
    ///
    /// # Examples
    ///
    /// ```
    /// use ahash::{AHasher, RandomState};
    /// use std::hash::{Hasher, BuildHasher};
    ///
    /// let build_hasher = RandomState::new();
    /// let mut hasher_1 = build_hasher.build_hasher();
    /// let mut hasher_2 = build_hasher.build_hasher();
    ///
    /// hasher_1.write_u32(1234);
    /// hasher_2.write_u32(1234);
    ///
    /// assert_eq!(hasher_1.finish(), hasher_2.finish());
    ///
    /// let other_build_hasher = RandomState::new();
    /// let mut different_hasher = other_build_hasher.build_hasher();
    /// different_hasher.write_u32(1234);
    /// assert_ne!(different_hasher.finish(), hasher_1.finish());
    /// ```
    /// [Hasher]: std::hash::Hasher
    /// [BuildHasher]: std::hash::BuildHasher
    /// [HashMap]: std::collections::HashMap
    #[inline]
    fn build_hasher(&self) -> AHasher {
        AHasher::from_random_state(self)
    }
}

#[cfg(feature = "specialize")]
impl BuildHasherExt for RandomState {
    #[inline]
    fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = AHasherU64 {
            buffer: self.k0,
            pad: self.k1,
        };
        value.hash(&mut hasher);
        hasher.finish()
    }

    #[inline]
    fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = AHasherFixed(self.build_hasher());
        value.hash(&mut hasher);
        hasher.finish()
    }

    #[inline]
    fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = AHasherStr(self.build_hasher());
        value.hash(&mut hasher);
        hasher.finish()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_unique() {
        let a = RandomState::new();
        let b = RandomState::new();
        assert_ne!(a.build_hasher().finish(), b.build_hasher().finish());
    }

    #[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
    #[test]
    fn test_not_pi() {
        assert_ne!(PI, seeds());
    }

    #[cfg(all(feature = "compile-time-rng", any(not(feature = "runtime-rng"), test)))]
    #[test]
    fn test_not_pi_const() {
        assert_ne!(PI, seeds());
    }

    #[cfg(all(not(feature = "runtime-rng"), not(feature = "compile-time-rng")))]
    #[test]
    fn test_pi() {
        assert_eq!(PI, seeds());
    }

    #[test]
    fn test_with_seeds_const() {
        const _CONST_RANDOM_STATE: RandomState = RandomState::with_seeds(17, 19, 21, 23);
    }
}