1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//! AHash is a hashing algorithm is intended to be a high performance, (hardware specific), keyed hash function.
//! This can be seen as a DOS resistant alternative to `FxHash`, or a fast equivalent to `SipHash`.
//! It provides a high speed hash algorithm, but where the result is not predictable without knowing a Key.
//! This allows it to be used in a `HashMap` without allowing for the possibility that an malicious user can
//! induce a collision.
//!
//! # How aHash works
//!
//! aHash uses the hardware AES instruction on x86 processors to provide a keyed hash function.
//! aHash is not a cryptographically secure hash.
//!
//! # Example
//! ```
//! use ahash::{AHasher, RandomState};
//! use std::collections::HashMap;
//!
//! let mut map: HashMap<i32, i32, RandomState> = HashMap::default();
//! map.insert(12, 34);
//! ```
//! For convinence wrappers called `AHashMap` and `AHashSet` are also provided.
//! These to the same thing with slightly less typing.
//! ```ignore
//! use ahash::AHashMap;
//!
//! let mut map: AHashMap<i32, i32> = AHashMap::with_capacity(4);
//! map.insert(12, 34);
//! map.insert(56, 78);
//! ```
#![deny(clippy::correctness, clippy::complexity, clippy::perf)]
#![allow(clippy::pedantic, clippy::cast_lossless, clippy::unreadable_literal)]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![cfg_attr(feature = "specialize", feature(min_specialization))]

#[macro_use]
mod convert;

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)))]
mod aes_hash;
mod fallback_hash;
#[cfg(test)]
mod hash_quality_test;

#[cfg(feature = "std")]
mod hash_map;
#[cfg(feature = "std")]
mod hash_set;
mod operations;
mod random_state;
mod specialize;

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)))]
pub use crate::aes_hash::AHasher;

#[cfg(not(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri))))]
pub use crate::fallback_hash::AHasher;
pub use crate::random_state::RandomState;

pub use crate::specialize::CallHasher;

#[cfg(feature = "std")]
pub use crate::hash_map::AHashMap;
#[cfg(feature = "std")]
pub use crate::hash_set::AHashSet;
use core::hash::BuildHasher;
use core::hash::Hash;
use core::hash::Hasher;

/// Provides a default [Hasher] with fixed keys.
/// This is typically used in conjunction with [BuildHasherDefault] to create
/// [AHasher]s in order to hash the keys of the map.
///
/// Generally it is preferable to use [RandomState] instead, so that different
/// hashmaps will have different keys. However if fixed keys are desireable this
/// may be used instead.
///
/// # Example
/// ```
/// use std::hash::BuildHasherDefault;
/// use ahash::{AHasher, RandomState};
/// use std::collections::HashMap;
///
/// let mut map: HashMap<i32, i32, BuildHasherDefault<AHasher>> = HashMap::default();
/// map.insert(12, 34);
/// ```
///
/// [BuildHasherDefault]: std::hash::BuildHasherDefault
/// [Hasher]: std::hash::Hasher
/// [HashMap]: std::collections::HashMap
impl Default for AHasher {
    /// Constructs a new [AHasher] with fixed keys.
    /// If `std` is enabled these will be generated upon first invocation.
    /// Otherwise if the `compile-time-rng`feature is enabled these will be generated at compile time.
    /// If neither of these features are available, hardcoded constants will be used.
    ///
    /// Because the values are fixed, different hashers will all hash elements the same way.
    /// This could make hash values predictable, if DOS attacks are a concern. If this behaviour is
    /// not required, it may be preferable to use [RandomState] instead.
    ///
    /// # Examples
    ///
    /// ```
    /// use ahash::AHasher;
    /// use std::hash::Hasher;
    ///
    /// let mut hasher_1 = AHasher::default();
    /// let mut hasher_2 = AHasher::default();
    ///
    /// hasher_1.write_u32(1234);
    /// hasher_2.write_u32(1234);
    ///
    /// assert_eq!(hasher_1.finish(), hasher_2.finish());
    /// ```
    #[inline]
    fn default() -> AHasher {
        RandomState::with_fixed_keys().build_hasher()
    }
}

/// Used for specialization. (Sealed)
pub(crate) trait BuildHasherExt: BuildHasher {
    #[doc(hidden)]
    fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64;

    #[doc(hidden)]
    fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64;

    #[doc(hidden)]
    fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64;
}

impl<B: BuildHasher> BuildHasherExt for B {
    #[inline]
    #[cfg(feature = "specialize")]
    default fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = self.build_hasher();
        value.hash(&mut hasher);
        hasher.finish()
    }
    #[inline]
    #[cfg(not(feature = "specialize"))]
    fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = self.build_hasher();
        value.hash(&mut hasher);
        hasher.finish()
    }
    #[inline]
    #[cfg(feature = "specialize")]
    default fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = self.build_hasher();
        value.hash(&mut hasher);
        hasher.finish()
    }
    #[inline]
    #[cfg(not(feature = "specialize"))]
    fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = self.build_hasher();
        value.hash(&mut hasher);
        hasher.finish()
    }
    #[inline]
    #[cfg(feature = "specialize")]
    default fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = self.build_hasher();
        value.hash(&mut hasher);
        hasher.finish()
    }
    #[inline]
    #[cfg(not(feature = "specialize"))]
    fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = self.build_hasher();
        value.hash(&mut hasher);
        hasher.finish()
    }
}

// #[inline(never)]
// #[doc(hidden)]
// pub fn hash_test(input: &[u8]) -> u64 {
//     let a = RandomState::with_seeds(11, 22, 33, 44);
//     <[u8]>::get_hash(input, &a)
// }

#[cfg(feature = "std")]
#[cfg(test)]
mod test {
    use crate::convert::Convert;
    use crate::*;
    use std::collections::HashMap;
    use std::hash::Hash;

    #[test]
    fn test_default_builder() {
        use core::hash::BuildHasherDefault;

        let mut map = HashMap::<u32, u64, BuildHasherDefault<AHasher>>::default();
        map.insert(1, 3);
    }

    #[test]
    fn test_builder() {
        let mut map = HashMap::<u32, u64, RandomState>::default();
        map.insert(1, 3);
    }

    #[test]
    fn test_conversion() {
        let input: &[u8] = b"dddddddd";
        let bytes: u64 = as_array!(input, 8).convert();
        assert_eq!(bytes, 0x6464646464646464);
    }


    #[test]
    fn test_non_zero() {
        let mut hasher1 = AHasher::new_with_keys(0, 0);
        let mut hasher2 = AHasher::new_with_keys(0, 0);
        "foo".hash(&mut hasher1);
        "bar".hash(&mut hasher2);
        assert_ne!(hasher1.finish(), 0);
        assert_ne!(hasher2.finish(), 0);
        assert_ne!(hasher1.finish(), hasher2.finish());

        let mut hasher1 = AHasher::new_with_keys(0, 0);
        let mut hasher2 = AHasher::new_with_keys(0, 0);
        3_u64.hash(&mut hasher1);
        4_u64.hash(&mut hasher2);
        assert_ne!(hasher1.finish(), 0);
        assert_ne!(hasher2.finish(), 0);
        assert_ne!(hasher1.finish(), hasher2.finish());
    }

    #[test]
    fn test_non_zero_specialized() {
        let hasher_build = RandomState::with_seeds(0,0,0,0);

        let h1 = str::get_hash("foo", &hasher_build);
        let h2 = str::get_hash("bar", &hasher_build);
        assert_ne!(h1, 0);
        assert_ne!(h2, 0);
        assert_ne!(h1, h2);

        let h1 = u64::get_hash(&3_u64, &hasher_build);
        let h2 = u64::get_hash(&4_u64, &hasher_build);
        assert_ne!(h1, 0);
        assert_ne!(h2, 0);
        assert_ne!(h1, h2);
    }

    #[test]
    fn test_ahasher_construction() {
        let _ = AHasher::new_with_keys(1234, 5678);
    }
}